
13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

309

https://doi.org/10.36007/5093.2024.309

STRICT AND APPROXIMATE FUNCTIONAL DEPENDENCY
EXTRACTION WITH SEQUENTIAL INDEXING TABLES-

BASED SEARCH TREES

Balázs TUSOR 1 – Ondrej TAKÁČ 2 – Annamária R. VÁRKONYI-KÓCZY 3

– Štefan GUBO 4

ABSTRACT
Data relation analysis has been a very important field of data science for the past few
decades, in which the goal is to discover relationships between data attributes. Functional
dependencies are among the most basic of such relations, defining a strict determination
between the values of the attribute set on the determinant side and the values of the attribute
on the dependent side of the relation. Approximate functional dependencies allow a certain
amount of deviation from strict dependencies, and thus, can indicate relationships that are
true for a large extent, with only a few exemptions. In this paper, a new method is presented
for the extraction of strict and approximate dependencies, which applies the same base
idea as the SFIT, but with the combination of binary search trees to reduce the required
memory without sacrificing much of the operational speed.

KEYWORDS
functional dependency extraction, approximate functional dependency extraction, indexing
tables

INTRODUCTION
Data relation analysis has been a very important field of data science for the past few

decades, in which the goal is to discover relationships between data attributes. Functional
dependencies (FDs) are among the most basic of such relations, defining a strict determination
between the values of the attribute set on the determinant side and the values of the attribute on
the dependent side of the relation. This is not only helpful in optimizing database systems, but
it is also often used in data mining, in order to find hidden causations (or at least, correlations)
between the attributes. Approximate functional dependencies (AFDs) allow a certain amount
of deviation from strict dependencies, and thus, can indicate relationships that are true for a
large extent, with only a few exemptions.

In previous work, the authors have developed a classifier called Sequential Fuzzy
Indexing Tables (SFIT) (Várkonyi-Kóczy et al., 2016) that can be used to find strict and
approximate FDs very quickly, exploiting the high operational speed of lookup tables. As a
trade-off, the SFIT classifier uses a significant amount of memory that scales exponentially

1 Balázs Tusor, J. Selye University, Faculty of Economics and Informatics, Department of Informatics,
tusorb@ujs.sk
2 Ondrej Takáč, J. Selye University, Faculty of Economics and Informatics, Department of Informatics,
takaco@ujs.sk
3 Annamária R. Várkonyi-Kóczy, J. Selye University, Faculty of Economics and Informatics, Department of
Informatics, koczya@ujs.sk
4 Štefan Gubo, J. Selye University, Faculty of Economics and Informatics, Department of Informatics,
gubos@ujs.sk

mailto:tusorb@ujs.sk
mailto:takaco@ujs.sk
mailto:koczya@ujs.sk
mailto:gubos@ujs.sk
mailto:tusorb@ujs.sk
mailto:takaco@ujs.sk
mailto:koczya@ujs.sk
mailto:gubos@ujs.sk

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

310

with the number of attributes. However, one interesting inherent property of the SFIT classifier
is that it can indicate the presence of FDs in its structure. Using this property, the so-called
Sequential Indexing Tables (SIT) (Tusor et al., 2019a and 2019b) method was created, and
further developed to indicate AFDs as well (Tusor et al., 2019c). The method was shown to be
able to find FDs and AFDs (in the following: A/FDs), but also had the disadvantageous memory
requirement of the base classifier.

In this paper, a new method is presented for the extraction of strict and approximate
dependencies, which applies the same base idea as the SFIT, but with the combination of binary
search trees to reduce the required memory without sacrificing much of the operational speed.

The rest of the paper is as follows. After a brief literature review and research
methodology description, the proposed method is described in detail. Its performance is
demonstrated on benchmark datasets, and its computational and spatial complexities are
analysed. Finally, the paper is concluded, and future work is described.

LITERATURE REVIEW

A functional dependency is a constraint between two attribute sets in a relation. Let R

be a relation (i.e., the full set of the attributes in a given dataset), 𝑋 ⊆ 𝑅 and 𝑌 ∈ 𝑅.
Y is functionally dependent on X (XY), if 𝑌 ∉ 𝑋 and there are no two tuples in the dataset
where the attribute values of X are the same, but the value of Y is different. An approximate
functional dependency is an FD that almost holds, i.e., is supported by a sufficient ratio of the
tuples in the dataset.

The main problem is that the computational complexity of finding all A/FDs in a given
dataset with N attributes and P tuples is 𝑂(𝑃2 ∙ 𝑁 ∙ 𝑁 ∙ 2𝑁) (Liu et al., 2010), comparing each
sample to all others (hence the quadratic dependence on the number of tuples), for each of the
N attributes, and all of the 𝑁 ∙ 2𝑁 attribute combinations. Most methods in literature use
different heuristics and techniques to circumvent the exponential factor, e.g. TANE (Huhtala et
al., 1999) uses a partitioning approach, FastFD (Wyss et al., 2001) applies a depth-first
heuristics-driven search to find the A/FDs in a dataset, while Pyro (Kruse and Naumann, 2018)
uses a separate-and-conquer discovery strategy.

The main feature of SITs, as mentioned in the introduction, is that they can indicate the
presence of A/FDs in the datasets intrinsically from their trained structure, without the need for
pairwise tuple comparisons, so the method is only dependent linearly on P. It also applies
heuristics in order to lower the number of examined attribute combinations (by ignoring the
non-minimal FDs), which works well on categorical and integer valued data, but tests showed
that for real valued data it only found most of the A/FDs.

RESEARCH METHODOLOGY

The primary goal of this preliminary research is investigating if the feasibility of an
A/FD extraction method that uses the base idea of the SIT method, but realizes it in a much
more compact structure that can handle real valued data easily as well. The other goal is to
investigate how its computational and spatial complexity scales with the number of attributes
and tuples (without applying any significant heuristics yet). For the implementation of the
prototype of the method, MS Visual Studio Community 2022 has been used and C# language
(.NET framework 4.7.2.), as its built-in debugging tools making the development process faster.

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

311

STRICT FUNCTIONAL DEPENDENCY INDICATION

As mentioned above, Sequential Indexed Search Trees (SISTs) indicate the presence of
strict FDs implicitly in their structure, so there is no need for pairwise tuple comparisons. They
have a layered architecture, in which each layer corresponds to a different attribute. The first
layer divides the set of input tuples into subsets based on the attribute values corresponding to
that of the layer, then each subsequent layer further divides the subsets gained in the previous
layer (so the layers are built upon each other). For each layer Li, the values the given attribute
can take are stored in a semi-balanced binary search tree (i.e., a binary search tree where the
difference in the length of each route from the root node to a leaf node is either 0 or 1). The
BST is implemented through 3 arrays:

 Value array V that stores the value of each node;
 Left child index CL that stores the index of the left-hand child of each node;
 Right child index CR that stores the index of the right-hand child, similarly.

The index of the root node of the tree is also stored (ri). The nodes are sorted into an
ascending order, so they can be easily arranged into a semi-balanced binary tree.

The subset indices in layer i are stored in index array μ (with the size of SV×mj, where
SV is the number of nodes in layer i, and j is the number of subset indices in the layer that layer
i is built upon). For the very first layer mj = 1. The total number of subset indices
in layer i is stored in mi. An example can be seen in Figure 1, where the first layer (with A0) is
built using the values of dataset T.

In the following layer (i’), the number of subset indices indicate the presence of FDs:
if mi = mi’, then layer i’ did not divide the subsets (gained in the previous layer i) any further,
the values of attribute i’ are not in contradiction with the value combinations from the previous
layers and thus, an FD is present. Figure 2 shows an example of a layer built upon A0, using A1.
As it can be seen, since m0 ≠ m1, there is no FD between their attributes (which can be observed
in Figure 1(a) as well, e.g., t0 and t3 has the same value for A0, but different values for A1).
Building another layer upon A1 using A2 yields similar results (Figure 3), however, doing the
same (i.e., building a layer upon A1) using A3 (Figure 4) then we can see that m3 = m1, thus,
there is a strict FD between the attributes of the preceding layers and the newly built layer:
A0A1A3.

Remark: As this example shows, the building order does not need to strictly follow the
original sequence of the attributes, a layer of any of the attributes can be built upon any other
layer.

Figure 1: (a) an example for a simple dataset with 4 attributes, and (b) the binary search tree

representation of the values of A0, as well as the index array representation of the tree and the subset
IDs.

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

312

Figure 2: The second layer L1 that was built on the first layer (L0), using attribute A1.

Figure 3: The third layer L2 that was built on the second layer (L1), using attribute A2.

Figure 4: The fourth Layer L3 that was built on the second layer (L1), using A3.

APPROXIMATE FUNCTIONAL DEPENDENCY INDICATION

In order to discover AFDs, the base structure is extended with two arrays. Firstly, the
number of samples in each subset are accounted for in array ρ (that has the same size as μ), and
the highest number in each column in ρ is stored in 1D array s. After a layer is fully built (i.e.,
all the tuples have been processed), the sum of the values of s indicates how many tuples support
the currently examined relation between the attributes of the previous layers and the attribute
of the last layer, and thus, the support can be calculated for layer i (built upon layer j) as:

 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖 = ∑ 𝑠𝑘𝑚𝑗𝑘=0𝑃 . (1)

Figure 5 shows an example for the additional structures for layers L0 and L1. As it can
be seen, the support for the AFD A0A1 is 4 out of 7 (57%). If L2 is built upon L1 (using A2),
the resulting support value for A0A1A2 is 6 out of 7 (85.7%).

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

313

Figure 5: The previous example with additional structures to measure the support for AFDs.

LAYER BUILDING SEQUENCE

Since only one layer building step is enough to indicate the presence of a given
functional dependency, the investigation of all viable attribute combinations can be done by
setting up a sequence, where one layer is built in each step either on the one built in the previous
step, or the one before that (except for the very first layers). An example can be seen for the so-
called set containment lattice for 4 attributes (that start with A0),

This sequence can be easily created by setting up a directed graph, where each node
corresponds to an attribute number, and has a directed edge towards all nodes with higher
attribute numbers. After that, a depth-first search is done on the graph: each time the processing
enters a node, its attribute number is noted as the attribute of the layer that should be built in
that step, and each time the processing has to step back (as there are no nodes with higher IDs
to proceed to), then the sequence will step back to a previous attribute too. Figure 6 shows an
illustration for the layer building sequence (LBS) on an N=4 attribute dataset. The red numbers
denote which attribute is to be built in a given step, and the green ones are their base (i.e., the
layer they are to be built upon). Notice that a) this can be simply generated by using the directed
graph approach described above for A0, then calculate the rest from it (by taking incrementing
its value and taking its modular division with N) and b) it excludes half of the possible attribute
combinations (without any negative consequences, as the order of attributes in the determinant
set is irrelevant, i.e., A0A1A2 has the same support as A1A0A2). Therefore, the number of
steps in an LBS is N∙2N-1, instead of 2N.

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

314

Figure 6: A layer building sequence for the lattice nodes (that start with 0). The red numbers denote a
newly built layer (trained with the attribute values of that number), while the green ones are the base

that the layer is built upon.

Normally, to be able to build a layer Li upon a sequence of previously built layers, it is

necessary to evaluate all tuples for each preceding layers in order to get the subset ID for each
tuple in the last layer, unless the subset IDs are stored as well, in a 2D array H (with the same
size as the dataset). This way, the layer building algorithm only has to regard what subset ID a
given tuple got in the base layer (green in Figure 6) to build the new layer (and update the
corresponding values in H).

THE OPERATION OF THE SIST METHOD

Considering the processes described previously, the proposed SIST works the following
way:

1. Create the layer building sequence.
2. Set up the BST (V, CL, CR) for each attribute.
3. For each step in the layer building sequence, build a layer (μ, ρ, s) and maintain

H, store each newly found FDs and AFDs (that has a support value above a given
threshold).

4. Go through the set of found A/FDs, and delete the non-minimal ones.

The last step is necessary because the newly found A/FDs are not necessarily minimal

(a subset of their determinant set is also determining the dependent attribute, e.g. the method
finds both A0A1A3A2 and A0A1A2, of which the former is non-minimal and can be
disregarded).

RESULTS

The performance of the proposed SIST method has been investigated on 7 benchmark
datasets (Dua et al., 2024), using an average laptop PC (Lenovo Legion 7 16ACHg6, AMD
Ryzen™ 9 5900HX CPU, 32GB RAM, Nvidia GeForce RTX 3080 16GB). The datasets are
the iris (Unwin & Kleinman, 2021), Wisconsin breast cancer (Mangasarian & Wolberg, 1990),
chess King-Rook vs. King (Bain & Hoff, 1994), solar flare (Solar, 1989), glass identification
(German, 1987), abalone (Nash et al., 1994) and seismic bumps (Sikora & Wrobel, 2010)
datasets.

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

315

Table 1. shows the number of attributes and tuples for each dataset, as well as the size
of the layer building sequence, and the number of strict FDs found. As it can be seen, the method
found all FDs that are present in the datasets. The number of AFDs for 5 different support range
are also shown.

Table 1: The 7 benchmark datasets used for testing, and the resulting A/FDs.

Dataset Iris WBC Chess Solar
Flare Glass ID Abalone Seismic

#Attributes (N) 5 10 7 13 11 9 16
#Tuples (P) 150 683 28056 323 214 4177 2584

LBS size 32 5120 448 53248 11264 2304 524288
Strict FDs 4 20 1 9 170 137 374

A
F

D
s

99-99.9% 2 143 0 13 233 740 2503
95-98.9% 7 503 0 323 497 965 7909
90-94.9% 2 1304 0 53248 622 1042 3851
85-89.9% 11 2068 0 78 728 1087 1603
80-84.9% 3 2539 1 1002 789 1126 3070

Further details can be seen in the Table 2. Each dataset has been evaluated 1000 times

and the required time and structure sizes have been averaged. The table also contains the highest
structure sizes, as well as the highest process memory usage. The FD detection is measured
without, while the AFD detection is measured with the additional structures (used for
calculating the support for each given attribute combination). The latter has an at least 30%
increase in structure size due to that, which also include a slight time increase (as the structures
are needed to be created and maintained).

Remark: the structure sizes have been measured with a built-in function
(GetTotalMemory()) of the programming language, while the process memory usage was taken
using the Diagnostic Tools of MS. Visual Studio.

Table 2: The required time and memory of the FD and AFD analysis on the 7 benchmark datasets.

Dataset Iris WBC Chess Solar
Flare

Glass
ID Abalone Seismic

Required
time [s]

FD 0.003 0.246 0.6 0.75 1.85 47.072 2426.1
AFD 0.003 0.326 0.719 0.989 3.056 70.808 3579.73

Avg.
structure size

[MB]

FD 0.698 0.45 4.44 0.756 3.56 67.54 18.4

AFD 0.58 0.61 13.2 1.21 5.88 165.96 27.5

Highest
structure size

[MB]

FD 0.699 0.569 5.63 0.885 3.56 318.82 22.64

AFD 0.58 0.62 35.26 1.21 9.278 318.33 42.92

Highest
process
memory

usage [MB]

FD 9 12 29 11 19 629 391

AFD 10 14 51 12 27 943 756

The tests shows that the biggest factor on the required time is the LBS size, which is

directly influenced by the number of attributes (in an exponential order). The size of the

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

316

structures on the other hand is more affected by the number of different values that the attributes
can take.

The dependence on the number of attributes have also been investigated: different
number of subsets of its attributes have been used (𝑁 ∈ [3, 11], P = 214) as inputs for the SIST
method, and the operational time has been averaged. The resulting exponential extraction time
can be followed in Figure 7. However, the process memory usage (Figure 8.) has been a linear
function of the attributes.

Figure 7: The overall FD and AFD extraction time for increasing attribute numbers.

Figure 8: The highest process memory usage for FD and AFD extraction, for increasing attribute

numbers.
The effect of increasing tuple numbers for the proposed system has also been

investigated: random data has been generated from the glass identification dataset (taking the
values from random rows for each attribute). The resulting average times can be seen in Figure
9, and the highest process memory usage in Figure 10. As it can be seen, they are both linear in
the number of tuples.

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

317

Figure 9: The overall FD and AFD extraction time for increasing numbers of tuples.

Figure10: The highest process memory usage for FD and AFD extraction, for increasing number of

tuples.

COMPUTATIONAL AND SPATIAL COMPLEXITY

The computational complexity of the proposed SIST method is exponential in the

number of attributes, as the tests have also indicated, due to the exponential number of layer
building sequence steps that makes the algorithm investigate all significant attribute
combinations. Each step involves the building of a single layer, using all P tuples and a BST
with �̅� nodes on average, thus, the operational time depends linearly on P and logarithmically
on the average number of values among the attributes. Compared to TANE (Table 3.), it is
much faster (as the latter depends on a quadratic order of P), but slower than FastFDs and SITs
(both of which use heuristics to circumvent the exponential factor). Remark: �̅� is the average
number of FDs, while Dmax is the highest size of the mapped value domain among its attributes

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

318

(as SIT needs to map each value into an integer range, so distinguishing between values like
0.001 and 0.002 needs a scaling factor of 1000, potentially making the required memory too
large).

In terms of spatial complexity, however, the proposed method is better than the other
three, due to it only being dependent on N and P linearly. The predecessor SIT method is highly
dependent on the domain size of the data, while the SIST is influenced by the typically much
smaller �̅�.

Table 3: Comparison between the computational and spatial complexities of TANE, FastFD, SIT
methods and the proposed SIST method.

Method Computational Complexity Spatial Complexity

TANE 𝑂 (2𝑁 ∙ (𝑁 ∙ 𝑃2.5)) 𝑂((𝑁 + 𝑃) ∙ 2𝑁)√𝑁)

FastFDs 𝑂(𝑃 ∙ 𝑁2 + 𝑃 ∙ 𝑁2 ∙ log(𝑃 ∙ 𝑁2)) 𝑂 (𝑁 ∙ 𝑃 ∙ (𝑃 − 1)2)
SIT 𝑂(𝑁3 ∙ 𝑃 ∙ �̅�) 𝑂(𝑁 ∙ 𝑃 ∙ 𝐷𝑚𝑎𝑥)

SIST 𝑂(𝑁 ∙ 2𝑁−1 ∙ (𝑃 ∙ log2 �̅�)) 𝑂(𝑁 ∙ 𝑃 ∙ �̅�)

CONCLUSION
In this paper, a new strict and approximate functional dependency method is presented

that uses semi-balanced binary search trees combined with indexing tables to achieve a method
that can indicate the presence of dependencies in its trained structure, instead of relying on
pairwise comparisons between the tuples.

The goal of this preliminary research is to investigate the feasibility of the proposed
method, as well as investigate its computational and spatial complexities. The tests conducted
on multiple benchmark datasets have demonstrated that the proposed method is capable of
finding all strict functional dependencies in a dataset and indicate approximate ones within
given support ranges, and although its runtime is an exponential factor of the number of
attributes (as no significant heuristics have been used yet), but its memory usage is a linear
function of the number of tuples and attributes, so with suitable heuristics, it could be further
developed into a method that can be advantageously used to analyse Big Data datasets.

In the next step of our research, the structure will be optimized to further reduce its
spatial complexity, then we will investigate various heuristics to reduce the number of examined
attribute combinations. For example, ignoring non-minimal A/FDs can potentially reduce the
time requirement, for which a different LBS strategy is necessary. After that, the method will
be implemented in Python so its performance can be compared to more modern methods (such
as Pyro).

ACKNOWLEDGMENT
This publication is the result of the Research & Innovation Operational Programme for the
Project: “Support of research and development activities of J. Selye University in the field of
Digital Slovakia and creative industry”, ITMS code: NFP313010T504, co-funded by the
European Regional Development Fund.

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

319

REFERENCES

Bain, M. & Hoff, A. (1994). Chess (King-Rook vs. King) [Dataset]. UCI Machine Learning
Repository. https://doi.org/10.24432/C57W2S.

Dua, D., Graff, C., (2024). UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
(accessed Mar. 1, 2024).

German, B. (1987). Glass Identification. UCI Machine Learning Repository.
https://doi.org/10.24432/C5WW2P

Huhtala, Y., Kärkkäinen, J., Porkka, P., & Toivonen, H. (1999). TANE: An efficient algorithm
for discovering functional and approximate dependencies. The computer journal, 42(2), 100-
111.

Kruse, S., & Naumann, F. (2018). Efficient discovery of approximate
dependencies. Proceedings of the VLDB Endowment, 11(7), 759-772.

Liu, J., Li, J., Liu, C., & Chen, Y. (2010). Discover dependencies from data—a review. IEEE
Transactions on Knowledge and Data Engineering, 24(2), 251-264.

Mangasarian, O. L., & Wolberg, W. H. (1990). Cancer diagnosis via linear programming.
University of Wisconsin-Madison Department of Computer Sciences.

Nash, W., Sellers, T., Talbot, S., Cawthorn, A., & Ford, W. (1994). Abalone [Dataset]. UCI
Machine Learning Repository. https://doi.org/10.24432/C55C7W .

Sikora, M. & Wrobel, L. (2010). seismic-bumps [Dataset]. UCI Machine Learning Repository.
https://doi.org/10.24432/C5W902 .

Solar Flare [Dataset]. (1989). UCI Machine Learning Repository.
https://doi.org/10.24432/C5530G .

Tusor, B., J.T. Tóth and A. R. Várkonyi-Kóczy, A.R. (2019). Functional Dependency Detection
with Sequential Indexing Tables. In 2019 IEEE 23rd International Conference on Intelligent
Engineering Systems (INES), Gödöllő, Hungary. 000307-000312.
https://doi.org/10.1109/INES46365.2019.9109488.

Tusor, B., Tóth, J.T., and Várkonyi-Kóczy, A.R. (2019). SIT-based Functional Dependency
Extraction. Acta Polytechnica Hungarica, 16(10): 65-81.

Tusor, B., Tóth, J.T., and Várkonyi-Kóczy, A.R. (2019). Approximate Functional Dependency
Mining with Sequential Indexing Tables. In 2019 IEEE 19th International Symposium on
Computational Intelligence and Informatics and 7th IEEE International Conference on Recent
Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-
MACRo), Szeged, Hungary, 000119-000124. https://doi.org/10.1109/CINTI-
MACRo49179.2019.9105179

Unwin, A., & Kleinman, K. (2021). The iris data set: In search of the source of
virginica. Significance, 18(6), 26-29.

Várkonyi-Kóczy, A. R., Tusor, B., & Tóth, J. T. (2016, October). Active problem workspace
reduction with a fast fuzzy classifier for real-time applications. In 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC) (pp. 004423-004428). IEEE.

https://doi.org/10.24432/C57W2S
https://doi.org/10.24432/C5WW2P
https://doi.org/10.24432/C55C7W
https://doi.org/10.24432/C5W902
https://doi.org/10.24432/C5530G
https://doi.org/10.1109/INES46365.2019.9109488
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105179
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105179
https://doi.org/10.24432/C57W2S
https://doi.org/10.24432/C5WW2P
https://doi.org/10.24432/C55C7W
https://doi.org/10.24432/C5W902
https://doi.org/10.24432/C5530G
https://doi.org/10.1109/INES46365.2019.9109488
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105179
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105179

13th International Conference of J. Selye University, 2022

… section

16th International Conference of J. Selye University, 2024

Sections of the Faculty of Economics and Informatics

320

Wyss, C., Giannella, C., & Robertson, E. (2001). Fastfds: A heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances extended abstract.
In Data Warehousing and Knowledge Discovery: Third International Conference, DaWaK
2001 Munich, Germany, September 5–7, 2001 Proceedings 3 (pp. 101-110). Springer Berlin
Heidelberg.

