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ABSTRACT 
Data relation analysis has been a very important field of data science for the past few 
decades, in which the goal is to discover relationships between data attributes. Functional 
dependencies are among the most basic of such relations, defining a strict determination 
between the values of the attribute set on the determinant side and the values of the attribute 
on the dependent side of the relation. Approximate functional dependencies allow a certain 
amount of deviation from strict dependencies, and thus, can indicate relationships that are 
true for a large extent, with only a few exemptions. In this paper, a new method is presented 
for the extraction of strict and approximate dependencies, which applies the same base 
idea as the SFIT, but with the combination of binary search trees to reduce the required 
memory without sacrificing much of the operational speed. 
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INTRODUCTION 
Data relation analysis has been a very important field of data science for the past few 

decades, in which the goal is to discover relationships between data attributes. Functional 
dependencies (FDs) are among the most basic of such relations, defining a strict determination 
between the values of the attribute set on the determinant side and the values of the attribute on 
the dependent side of the relation. This is not only helpful in optimizing database systems, but 
it is also often used in data mining, in order to find hidden causations (or at least, correlations) 
between the attributes. Approximate functional dependencies (AFDs) allow a certain amount 
of deviation from strict dependencies, and thus, can indicate relationships that are true for a 
large extent, with only a few exemptions. 

In previous work, the authors have developed a classifier called Sequential Fuzzy 
Indexing Tables (SFIT) (Várkonyi-Kóczy et al., 2016) that can be used to find strict and 
approximate FDs very quickly, exploiting the high operational speed of lookup tables. As a 
trade-off, the SFIT classifier uses a significant amount of memory that scales exponentially 
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with the number of attributes. However, one interesting inherent property of the SFIT classifier 
is that it can indicate the presence of FDs in its structure. Using this property, the so-called 
Sequential Indexing Tables (SIT) (Tusor et al., 2019a and 2019b) method was created, and 
further developed to indicate AFDs as well (Tusor et al., 2019c). The method was shown to be 
able to find FDs and AFDs (in the following: A/FDs), but also had the disadvantageous memory 
requirement of the base classifier. 

In this paper, a new method is presented for the extraction of strict and approximate 
dependencies, which applies the same base idea as the SFIT, but with the combination of binary 
search trees to reduce the required memory without sacrificing much of the operational speed. 

The rest of the paper is as follows. After a brief literature review and research 
methodology description, the proposed method is described in detail. Its performance is 
demonstrated on benchmark datasets, and its computational and spatial complexities are 
analysed. Finally, the paper is concluded, and future work is described. 
 
LITERATURE REVIEW 

 
A functional dependency is a constraint between two attribute sets in a relation. Let R 

be a relation (i.e., the full set of the attributes in a given dataset), 𝑋 ⊆ 𝑅 and 𝑌 ∈ 𝑅.  
Y is functionally dependent on X (XY), if 𝑌 ∉ 𝑋 and there are no two tuples in the dataset 
where the attribute values of X are the same, but the value of Y is different. An approximate 
functional dependency is an FD that almost holds, i.e., is supported by a sufficient ratio of the 
tuples in the dataset. 

The main problem is that the computational complexity of finding all A/FDs in a given 
dataset with N attributes and P tuples is 𝑂(𝑃2 ∙ 𝑁 ∙ 𝑁 ∙ 2𝑁) (Liu et al., 2010), comparing each 
sample to all others (hence the quadratic dependence on the number of tuples), for each of the 
N attributes, and all of the 𝑁 ∙ 2𝑁 attribute combinations. Most methods in literature use 
different heuristics and techniques to circumvent the exponential factor, e.g. TANE (Huhtala et 
al., 1999) uses a partitioning approach, FastFD (Wyss et al., 2001) applies a depth-first 
heuristics-driven search to find the A/FDs in a dataset, while Pyro (Kruse and Naumann, 2018) 
uses a separate-and-conquer discovery strategy. 

The main feature of SITs, as mentioned in the introduction, is that they can indicate the 
presence of A/FDs in the datasets intrinsically from their trained structure, without the need for 
pairwise tuple comparisons, so the method is only dependent linearly on P. It also applies 
heuristics in order to lower the number of examined attribute combinations (by ignoring the 
non-minimal FDs), which works well on categorical and integer valued data, but tests showed 
that for real valued data it only found most of the A/FDs.  
 
RESEARCH METHODOLOGY 

The primary goal of this preliminary research is investigating if the feasibility of an 
A/FD extraction method that uses the base idea of the SIT method, but realizes it in a much 
more compact structure that can handle real valued data easily as well. The other goal is to 
investigate how its computational and spatial complexity scales with the number of attributes 
and tuples (without applying any significant heuristics yet). For the implementation of the 
prototype of the method, MS Visual Studio Community 2022 has been used and C# language 
(.NET framework 4.7.2.), as its built-in debugging tools making the development process faster.  
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STRICT FUNCTIONAL DEPENDENCY INDICATION 
 

As mentioned above, Sequential Indexed Search Trees (SISTs) indicate the presence of 
strict FDs implicitly in their structure, so there is no need for pairwise tuple comparisons. They 
have a layered architecture, in which each layer corresponds to a different attribute. The first 
layer divides the set of input tuples into subsets based on the attribute values corresponding to 
that of the layer, then each subsequent layer further divides the subsets gained in the previous 
layer (so the layers are built upon each other). For each layer Li, the values the given attribute 
can take are stored in a semi-balanced binary search tree (i.e., a binary search tree where the 
difference in the length of each route from the root node to a leaf node is either 0 or 1). The 
BST is implemented through 3 arrays: 

 Value array V that stores the value of each node; 
 Left child index CL that stores the index of the left-hand child of each node; 
 Right child index CR that stores the index of the right-hand child, similarly. 

The index of the root node of the tree is also stored (ri). The nodes are sorted into an 
ascending order, so they can be easily arranged into a semi-balanced binary tree. 

The subset indices in layer i are stored in index array μ (with the size of SV×mj, where 
SV is the number of nodes in layer i, and j is the number of subset indices in the layer that layer 
i is built upon). For the very first layer mj = 1. The total number of subset indices  
in layer i is stored in mi. An example can be seen in Figure 1, where the first layer (with A0) is 
built using the values of dataset T. 

In the following layer (i’), the number of subset indices indicate the presence of FDs:  
if mi = mi’, then layer i’ did not divide the subsets (gained in the previous layer i) any further, 
the values of attribute i’ are not in contradiction with the value combinations from the previous 
layers and thus, an FD is present. Figure 2 shows an example of a layer built upon A0, using A1. 
As it can be seen, since m0 ≠ m1, there is no FD between their attributes (which can be observed 
in Figure 1(a) as well, e.g., t0 and t3 has the same value for A0, but different values for A1). 
Building another layer upon A1 using A2 yields similar results (Figure 3), however, doing the 
same (i.e., building a layer upon A1) using A3 (Figure 4) then we can see that m3 = m1, thus, 
there is a strict FD between the attributes of the preceding layers and the newly built layer: 
A0A1A3.  

Remark: As this example shows, the building order does not need to strictly follow the 
original sequence of the attributes, a layer of any of the attributes can be built upon any other 
layer. 

 
Figure 1: (a) an example for a simple dataset with 4 attributes, and (b) the binary search tree 

representation of the values of A0, as well as the index array representation of the tree and the subset 
IDs. 
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Figure 2: The second layer L1 that was built on the first layer (L0), using attribute A1. 

 

 
Figure 3: The third layer L2 that was built on the second layer (L1), using attribute A2. 

 

 
Figure 4: The fourth Layer L3 that was built on the second layer (L1), using A3. 

 
APPROXIMATE FUNCTIONAL DEPENDENCY INDICATION 
 

In order to discover AFDs, the base structure is extended with two arrays. Firstly, the 
number of samples in each subset are accounted for in array ρ (that has the same size as μ), and 
the highest number in each column in ρ is stored in 1D array s. After a layer is fully built (i.e., 
all the tuples have been processed), the sum of the values of s indicates how many tuples support 
the currently examined relation between the attributes of the previous layers and the attribute 
of the last layer, and thus, the support can be calculated for layer i (built upon layer j) as: 

 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖 = ∑ 𝑠𝑘𝑚𝑗𝑘=0𝑃 . (1) 

Figure 5 shows an example for the additional structures for layers L0 and L1. As it can 
be seen, the support for the AFD A0A1 is 4 out of 7 (57%). If L2 is built upon L1 (using A2), 
the resulting support value for A0A1A2 is 6 out of 7 (85.7%). 
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Figure 5: The previous example with additional structures to measure the support for AFDs. 

 
LAYER BUILDING SEQUENCE 

Since only one layer building step is enough to indicate the presence of a given 
functional dependency, the investigation of all viable attribute combinations can be done by 
setting up a sequence, where one layer is built in each step either on the one built in the previous 
step, or the one before that (except for the very first layers). An example can be seen for the so-
called set containment lattice for 4 attributes (that start with A0),  

This sequence can be easily created by setting up a directed graph, where each node 
corresponds to an attribute number, and has a directed edge towards all nodes with higher 
attribute numbers. After that, a depth-first search is done on the graph: each time the processing 
enters a node, its attribute number is noted as the attribute of the layer that should be built in 
that step, and each time the processing has to step back (as there are no nodes with higher IDs 
to proceed to), then the sequence will step back to a previous attribute too. Figure 6 shows an 
illustration for the layer building sequence (LBS) on an N=4 attribute dataset. The red numbers 
denote which attribute is to be built in a given step, and the green ones are their base (i.e., the 
layer they are to be built upon). Notice that a) this can be simply generated by using the directed 
graph approach described above for A0, then calculate the rest from it (by taking incrementing 
its value and taking its modular division with N) and b) it excludes half of the possible attribute 
combinations (without any negative consequences, as the order of attributes in the determinant 
set is irrelevant, i.e., A0A1A2 has the same support as A1A0A2). Therefore, the number of 
steps in an LBS is N∙2N-1, instead of 2N. 
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Figure 6: A layer building sequence for the lattice nodes (that start with 0). The red numbers denote a 
newly built layer (trained with the attribute values of that number), while the green ones are the base 

that the layer is built upon. 
 
Normally, to be able to build a layer Li upon a sequence of previously built layers, it is 

necessary to evaluate all tuples for each preceding layers in order to get the subset ID for each 
tuple in the last layer, unless the subset IDs are stored as well, in a 2D array H (with the same 
size as the dataset). This way, the layer building algorithm only has to regard what subset ID a 
given tuple got in the base layer (green in Figure 6) to build the new layer (and update the 
corresponding values in H). 

 
THE OPERATION OF THE SIST METHOD 
 

Considering the processes described previously, the proposed SIST works the following 
way: 

1. Create the layer building sequence. 
2. Set up the BST (V, CL, CR) for each attribute. 
3. For each step in the layer building sequence, build a layer (μ, ρ, s) and maintain 

H, store each newly found FDs and AFDs (that has a support value above a given 
threshold). 

4. Go through the set of found A/FDs, and delete the non-minimal ones. 
 
The last step is necessary because the newly found A/FDs are not necessarily minimal 

(a subset of their determinant set is also determining the dependent attribute, e.g. the method 
finds both A0A1A3A2 and A0A1A2, of which the former is non-minimal and can be 
disregarded).  

 
RESULTS 
 

The performance of the proposed SIST method has been investigated on 7 benchmark 
datasets (Dua et al., 2024), using an average laptop PC (Lenovo Legion 7 16ACHg6, AMD 
Ryzen™ 9 5900HX CPU, 32GB RAM, Nvidia GeForce RTX 3080 16GB). The datasets are 
the iris (Unwin & Kleinman, 2021), Wisconsin breast cancer (Mangasarian & Wolberg, 1990), 
chess King-Rook vs. King (Bain & Hoff, 1994), solar flare (Solar, 1989), glass identification 
(German, 1987), abalone (Nash et al., 1994) and seismic bumps (Sikora & Wrobel, 2010) 
datasets. 
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Table 1. shows the number of attributes and tuples for each dataset, as well as the size 
of the layer building sequence, and the number of strict FDs found. As it can be seen, the method 
found all FDs that are present in the datasets. The number of AFDs for 5 different support range 
are also shown.  

 
Table 1: The 7 benchmark datasets used for testing, and the resulting A/FDs. 

Dataset Iris WBC Chess Solar 
Flare Glass ID Abalone Seismic 

#Attributes (N) 5 10 7 13 11 9 16 
#Tuples (P) 150 683 28056 323 214 4177 2584 

LBS size 32 5120 448 53248 11264 2304 524288 
Strict FDs 4 20 1 9 170 137 374 

A
F

D
s 

99-99.9% 2 143 0 13 233 740 2503 
95-98.9% 7 503 0 323 497 965 7909 
90-94.9% 2 1304 0 53248 622 1042 3851 
85-89.9% 11 2068 0 78 728 1087 1603 
80-84.9% 3 2539 1 1002 789 1126 3070 
 
Further details can be seen in the Table 2. Each dataset has been evaluated 1000 times 

and the required time and structure sizes have been averaged. The table also contains the highest 
structure sizes, as well as the highest process memory usage. The FD detection is measured 
without, while the AFD detection is measured with the additional structures (used for 
calculating the support for each given attribute combination). The latter has an at least 30% 
increase in structure size due to that, which also include a slight time increase (as the structures 
are needed to be created and maintained).  

Remark: the structure sizes have been measured with a built-in function 
(GetTotalMemory()) of the programming language, while the process memory usage was taken 
using the Diagnostic Tools of MS. Visual Studio. 
 

Table 2: The required time and memory of the FD and AFD analysis on the 7 benchmark datasets. 

Dataset Iris WBC Chess Solar 
Flare 

Glass 
ID Abalone Seismic 

Required 
time [s] 

FD 0.003 0.246 0.6 0.75 1.85 47.072 2426.1 
AFD 0.003 0.326 0.719 0.989 3.056 70.808 3579.73 

Avg. 
structure size 

[MB] 

FD 0.698 0.45 4.44 0.756 3.56 67.54 18.4 

AFD 0.58 0.61 13.2 1.21 5.88 165.96 27.5 

Highest 
structure size 

[MB] 

FD 0.699 0.569 5.63 0.885 3.56 318.82 22.64 

AFD 0.58 0.62 35.26 1.21 9.278 318.33 42.92 

Highest 
process 
memory 

usage [MB] 

FD 9 12 29 11  19 629 391 

AFD 10 14 51 12 27 943 756 

 
The tests shows that the biggest factor on the required time is the LBS size, which is 

directly influenced by the number of attributes (in an exponential order). The size of the 
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structures on the other hand is more affected by the number of different values that the attributes 
can take. 

The dependence on the number of attributes have also been investigated: different 
number of subsets of its attributes have been used (𝑁 ∈ [3, 11], P = 214) as inputs for the SIST 
method, and the operational time has been averaged. The resulting exponential extraction time 
can be followed in Figure 7. However, the process memory usage (Figure 8.) has been a linear 
function of the attributes. 

 

 
Figure 7: The overall FD and AFD extraction time for increasing attribute numbers. 

 
Figure 8: The highest process memory usage for FD and AFD extraction, for increasing attribute 

numbers. 
The effect of increasing tuple numbers for the proposed system has also been 

investigated: random data has been generated from the glass identification dataset (taking the 
values from random rows for each attribute). The resulting average times can be seen in Figure 
9, and the highest process memory usage in Figure 10. As it can be seen, they are both linear in 
the number of tuples. 
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Figure 9: The overall FD and AFD extraction time for increasing numbers of tuples. 

 
Figure10: The highest process memory usage for FD and AFD extraction, for increasing number of 

tuples. 
 

COMPUTATIONAL AND SPATIAL COMPLEXITY 
 
The computational complexity of the proposed SIST method is exponential in the 

number of attributes, as the tests have also indicated, due to the exponential number of layer 
building sequence steps that makes the algorithm investigate all significant attribute 
combinations. Each step involves the building of a single layer, using all P tuples and a BST 
with �̅� nodes on average, thus, the operational time depends linearly on P and logarithmically 
on the average number of values among the attributes. Compared to TANE (Table 3.), it is 
much faster (as the latter depends on a quadratic order of P), but slower than FastFDs and SITs 
(both of which use heuristics to circumvent the exponential factor). Remark: �̅� is the average 
number of FDs, while Dmax is the highest size of the mapped value domain among its attributes 
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(as SIT needs to map each value into an integer range, so distinguishing between values like 
0.001 and 0.002 needs a scaling factor of 1000, potentially making the required memory too 
large).  

In terms of spatial complexity, however, the proposed method is better than the other 
three, due to it only being dependent on N and P linearly. The predecessor SIT method is highly 
dependent on the domain size of the data, while the SIST is influenced by the typically much 
smaller �̅�. 

 
Table 3: Comparison between the computational and spatial complexities of TANE, FastFD, SIT 
methods and the proposed SIST method. 

Method Computational Complexity Spatial Complexity 

TANE 𝑂 (2𝑁 ∙ (𝑁 ∙ 𝑃2.5)) 𝑂((𝑁 + 𝑃) ∙ 2𝑁)√𝑁 ) 

FastFDs 𝑂(𝑃 ∙ 𝑁2 + 𝑃 ∙ 𝑁2 ∙ log(𝑃 ∙ 𝑁2)) 𝑂 (𝑁 ∙ 𝑃 ∙ (𝑃 − 1)2 ) 
SIT 𝑂(𝑁3 ∙ 𝑃 ∙ �̅�) 𝑂(𝑁 ∙ 𝑃 ∙ 𝐷𝑚𝑎𝑥) 

SIST 𝑂(𝑁 ∙ 2𝑁−1 ∙ (𝑃 ∙ log2 �̅�)) 𝑂(𝑁 ∙ 𝑃 ∙ �̅�) 
 

CONCLUSION 
In this paper, a new strict and approximate functional dependency method is presented 

that uses semi-balanced binary search trees combined with indexing tables to achieve a method 
that can indicate the presence of dependencies in its trained structure, instead of relying on 
pairwise comparisons between the tuples. 

The goal of this preliminary research is to investigate the feasibility of the proposed 
method, as well as investigate its computational and spatial complexities. The tests conducted 
on multiple benchmark datasets have demonstrated that the proposed method is capable of 
finding all strict functional dependencies in a dataset and indicate approximate ones within 
given support ranges, and although its runtime is an exponential factor of the number of 
attributes (as no significant heuristics have been used yet), but its memory usage is a linear 
function of the number of tuples and attributes, so with suitable heuristics, it could be further 
developed into a method that can be advantageously used to analyse Big Data datasets. 

In the next step of our research, the structure will be optimized to further reduce its 
spatial complexity, then we will investigate various heuristics to reduce the number of examined 
attribute combinations. For example, ignoring non-minimal A/FDs can potentially reduce the 
time requirement, for which a different LBS strategy is necessary. After that, the method will 
be implemented in Python so its performance can be compared to more modern methods (such 
as Pyro). 
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